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Abstract The numerical method we consider is based on the nonstaggered central scheme
proposed by Jiang, Levy, Lin, Osher, and Tadmor (SIAM J. Numer. Anal. 35,
2147(1998)) that was obtained by conversion of the standard central NT scheme
to the nonstaggered mesh. The generalization we propose is connected with the
numerical evaluation of the geometrical source term. The presented scheme is
applied to the nonhomogeneous shallow water system. Including an appropriate
numerical treatment for the source term evaluation we obtain the scheme that
preserves quiescent steady-state for the shallow water equations exactly. We
consider two different approaches that depend on the discretization of the riverbed
bottom. The obtained schemes are well balanced and present accurate and robust
results in both steady and unsteady flow simulations.

Keywords: balance law, central schemes, exact C-property, shallow water equations.

Introduction
In recent years many numerical schemes have been adopted for applica-

tion to hyperbolic balance laws. Different schemes are obtained according to
the discretization of the source term. In presence of the stiff source terms in
balance laws, the implicit evaluation of the source term is needed, since the
explicit evaluation can produce numerical instabilities. For other type of bal-
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ance laws, which incorporate the geometrical source terms, such as shallow
water equations, an essentially different approach must be used. Here the ex-
plicit evaluation of the source term, that additionally accounts for the crucial
property of balancing between the flux gradient and the source term, leads to
very accurate and robust numerical schemes. One of the first numerical schemes
based on that approach was developed by Bermudez and Vazquez ([1, 2]). Their
numerical scheme is of finite volume type, with the source term evaluation that
includes the upwinding in such a way that the obtained scheme is consistent
with the quiescent steady state, i.e., it satisfies the C-property. In [9] the surface
gradient method used in combination with the MUSCL Hancock scheme leads
to a balanced numerical scheme. The central–upwind schemes ([3]) have been
also developed for the shallow water equations. Furthermore, in [7] higher
order numerical schemes, i.e., the finite difference ENO and WENO schemes,
were extended to the balance laws.

In this work we focus on the nonstaggered central NT scheme ([8, 10]). In
[10], the central NT schemes were already developed for the balance laws.
However, the approach used there is aimed to the balance laws with a stiff
source term, while here we consider systems with a geometrical source term
and present a completely different numerical treatment.

The paper is organized as follows. After the nonstaggered central NT scheme
for the homogeneous case is presented, its extension to the balance law is given.
In second section we apply the extended schemes to the shallow water equa-
tions. The discretizations of the source term are made according to the required
balancing property. Additionally the numerical scheme must be adapted in such
a way that the transformations from the nonstaggered to the staggered values
and vice a versa preserve the quiescent flow. In that sense, based on the differ-
ent riverbed discretizations, we introduce two reformulations of the numerical
scheme for the shallow water flow case. In this section we also prove that both
reformulations satisfy the exact C-property. On numerical tests in the last sec-
tion we verify the accuracy of the given schemes and present the improvement
obtained by using the balanced version of the schemes.

1. Central NT scheme.
In this section we give a short overview of the central schemes. Detail

description of this schemes can be found in [8, 10, 5], etc.
Let us consider the one–dimensional homogeneous hyperbolic conservation

law system
∂t∂∂ u + ∂x∂ f(u) = 0. (1)

Cells of size ∆x, IiII = [xi− 1
2
, xi+ 1

2
], i = 0, . . . ,N , where xi± 1

2
= xi ± ∆x

2

and points xi = i∆x as the ith cell center are defined. Furthermore, the
staggered cells [xi, xi+1] are denoted with IiI + 1

2
. For a solution u(x, t), un

i =
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u(xi, t
n) denotes a point value of the solution at t = tn. The abbreviations un

i
and un

i+ 1
2

are used for the average values of the solution over the cells Ii and

IiI + 1
2

respectively. We start with the integration of (1) over a control volume

IiI + 1
2
× [tn, tn+1] and obtain the expression

un+1
i+ 1

2

= un
i+ 1

2
− 1

∆x

[∫ tn+1

t

∫∫
n

∫∫
f(u(xi+1, t))dt−

∫ tn+1

t

∫∫
n

∫∫
f(u(xi, t))dt

]
(2)

The second order Nessyahu–Tadmor central scheme (central NT scheme) is
based on a piecewise linear representation of the solution on each grid cell,

u(x, tn) =
∑

i

(
un

i + u′
i(x− xi)

)
χIi(x). (3)

A slope u′
i inside the cell is computed by using some standard slope limiting

procedure ([5]). The simplest choice is a minmod limiter u′
i = 1

∆xMM(ui+1−
ui, ui − ui−1), where MM(a, b) is the minmod function. Now, un

i+ 1
2

is the

cell average at time tn obtained by integrating the piecewise linear function (3)
over the cell IiI + 1

2
, i.e.,

un
i+ 1

2
=

1
2
(un

i + un
i+1) +

∆x

8
(u′

i − u′
i+1). (4)

Thus, with (4) a second order accuracy in space would be obtained. The ap-
proximations of the integrals in (2) such that the second order accuracy in
time is attained, yields to the central NT scheme that could be written in the
predictor–corrector form as

u
n+ 1

2
i = un

i −
∆t

2∆x
f ′

iff , un
i = un

i , (5)

un+1
i+ 1

2

= un
i+ 1

2
− ∆t

∆x

(
f(u

n+ 1
2

i+1 )− f(u
n+ 1

2
i )

)
. (6)

Here f ′
iff denotes the spatial derivative of the flux. In order to prevent spurious

oscillations in the numerical solution, it is necessary to evaluate the quantity f ′
i

using a suitable slope limiter ([8]). In that sense the slope limiter procedure can
be applied directly to the values f(un

i ) or the relation f ′
iff = A(un

i ) u′
i should be

used. In this work the second approach in combination with a minmod slope
limiter is chosen.

After the staggered values un+1
i+ 1

2

in the corrector step of the scheme are

computed, the nonstaggered version of the central NT scheme developed in [8],
returns back to the nonstaggered mesh. That means, the average nonstaggered
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values un+1
i must be determined. In order to do that, first the piecewise linear

representation of the form

ũ(x, tn+1) =
∑

i

(
un+1

i+ 1
2

+ u′
i+ 1

2

(x− xi+ 1
2
)
)

χI
i+1

2

(x). (7)

is constructed. The staggered cell derivatives are computed by applying a slope
limiter procedure to the staggered values un+1

i+ 1
2

. The values un+1
i are now

obtained by averaging this linear interpolant over the cell Ii,

un+1
i =

1
2
(un+1

i− 1
2

+ un+1
i+ 1

2

)− ∆x

8
(u′

i+ 1
2
− u′

i− 1
2
). (8)

We consider now a balance law system

∂t∂∂ u + ∂x∂ f(u) = g(u, x). (9)

In order to solve it with the central NT scheme an appropriate extension of the
presented scheme should be applied. Several possible approaches are given in
[10]. We consider here only the geometrical type source terms, therefore an
upwinded discretization will be crucial for obtaining a stable numerical scheme.
The additional requirements on the source term evaluation that depend on the
particular balance law and that are proposed in the next section, ensure the good
accuracy of the numerical scheme developed in this work.

Let us proceed as in the homogeneous case. The integration of (9) over a
control volume IiI + 1

2
× [tn, tn+1] gives

un+1
i+ 1

2

= un
i+ 1

2

− 1
∆x

[∫ tn+1

t

∫∫
n

∫∫
f(u(xi+1, t))dt−

∫ tn+1

t

∫∫
n

∫∫
f(u(xi, t))dt

]

+
1

∆x

∫ tn+1

t

∫∫
n

∫∫ ∫ xi+1

x

∫∫
i

g(u(x, t), x)dxdt. (10)

To obtain a second order scheme, all the integrals in the above expression must
be evaluated according to this order. The flux integral is approximated as before
by using the midpoint rule, i.e.,∫ tn+1

t

∫∫
n

∫∫
f(u(xi, t))dt ≈ ∆xf(u

n+ 1
2

i )

where the predictor values u
n+ 1

2
i are now evaluated by using the relation

u
n+ 1

2
i = un

i +
∆t

2∆x
(−f ′

iff + gn
i ∆x) (11)
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obtained from (9). The term gn
i can be evaluated pointwise or some other

approximation could be applied as we will see in the proceeding of this work.
Furthermore, the approximation of the source term integral in (9) is defined
such that second order accuracy in time is obtained. With this discretization
the corrector step of our scheme

un+1
i+ 1

2

= un
i+ 1

2
− ∆t

∆x

(
f(u

n+ 1
2

i+1 )− f(u
n+ 1

2
i )

)
+ ∆tg(u

n+ 1
2

i , u
n+ 1

2
i+1 ) (12)

is obtained. The spatial accuracy depends on the definition of the term

g(u
n+ 1

2
i , u

n+ 1
2

i+1 ).

Transformations from the staggered values to the nonstaggered ones and in the
opposite direction are obtained with the relations (4) and (8) as in the homoge-
neous case.

2. Balanced central NT scheme for the shallow water
equations.

In this section we apply the nonstaggered central NT schemes to the shallow
water equations. In the shallow water case (9) is defined with

u =
(

h
hv

)
, f =

(
hv

hv2 + 1
2gh2

)
, g =

(
0

gh(− dz
dx −

M2v|v|
h4/3 )

)
. (13)

Here h = h(x, t) is the water depth, v = v(x, t) is the water velocity, g is
acceleration due to gravity, z = z(x) is the bed level, and M = M(x) is the
Manning’s friction factor.

The crucial property we want to be satisfied when the central NT scheme
is applied to the shallow water equations is the exact C-property ([1]). The
numerical scheme has exact C-property if it preserves a steady state of the
quiescent flow h + z = const, v = 0 exactly. Since in that case the balancing
between the flux gradient and the source term must be obtained, we refer to the
scheme developed in this paper as to the balanced central NT scheme. In order to
define the central NT scheme for the shallow–water system, the source term gn

i

in the predictor step (11) and the term g(u
n+ 1

2
i , u

n+ 1
2

i+1 ) that arises in the corrector
step (12) should be determined. From this point on, when the derivations of the
variables are evaluated, we use just a minmod limiter function. Following the
idea of decomposing the source term, we propose to evaluate gn

i as

gn
i = gn

i,L + gn
i,R, (14)

where

gn
i,L = s2

i

1− si

2

(
0

−ghn
i

zi−zi−1

∆x

)
, gn

i,R = s2
i

1 + si

2

(
0

−ghn
i

zi+1−zi

∆x

)
.
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The parameter si in the ith cell is defined by

si =

⎧⎨⎧⎧⎩⎨⎨ −1 , if h′
i = hn

i − hn
i−1

1 , if h′
i = hn

i+1 − hn
i

0 , if h′
i = 0

. (15)

Depending on the side that is chosen when the variable and the flux derivations
are evaluated the defined parameter changes the sign value. Thus, the expression
(14) actually includes the source term upwinding. In this way the source term
discretization is made according to the flux gradient evaluation. For the term

g(u
n+ 1

2
i , u

n+ 1
2

i+1 ) we propose to use just the centered approximation

g(u
n+ 1

2
i , u

n+ 1
2

i+1 ) =

(
0

g
h

n+ 1
2

i +h
n+ 1

2
i+1

2 (− zi+1−zi

∆x )

)
. (16)

The part of the source term concerning friction forces is omitted in (14) and
(16). The reason lies in the fact it does not appear when a quiescent flow case
is considered and we evaluate it just pointwise.

Since we want that the defined numerical scheme preserves the quiescent
flow exactly, we must first check if the balancing between the flux gradient and
the source term is obtained. In the quiescent flow case the variable, the flux and
the source term vector reduce to

u =
(

h
0

)
, f =

(
0

1
2gh2

)
, g =

(
0

gh(− dz
dx )

)
. (17)

If we use the definition (14) in (11), it is not hard to see that in the quiescent
flow case the equality

u
n+ 1

2
i = un

i (18)

holds. In the similar way from (12) by using (16) we get

un+1
i+ 1

2

= un
i+ 1

2

. (19)

The obtained equalities are consequence of balancing in both steps of the nu-
merical scheme. From (18) and (19) we can conclude that in the quiescent flow
case no time evolution of the variables occurs. Hence, if the initial discretization
satisfies the quiescent flow condition, this condition would be preserved if the
procedure of passing form the original to the staggered mesh and vice a versa is
defined in an appropriate way. For that purpose the modification of the original
nonstaggered version of the central NT scheme for applying it to the shallow
water equations is needed. We propose here two different reformulations of the
algorithm for evaluation of the staggered and the nonstaggered cell averages in
the shallow water case. These reformulations are based on discretizations of
the riverbed bottom.
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2.1 The interface type reformulation
We consider first the case where the bed topography is defined at the cell

interfaces and the bed shape is approximated as a linear function inside each cell.
That means, the valueszi− 1

2
andzi+ 1

2
are known, while the height of the riverbed

bottom inside the cell IiII is expressed as z(x) = zi + 1
∆x(zi+ 1

2
−zi− 1

2
)(x−xi).

At the cell center the relation zi =
z
i− 1

2
+z

i+ 1
2

2 is valid.
Now we start with our reformulation. The corrections we propose are con-

nected with the way of evaluation of u′
i and u′

i+ 1
2

in (3) and (7). The given

reformulation is based on the surface gradient method.
Since in the quiescent flow case the second component in the variable vector

is equal zero, the modifications will be done just for the first component, i.e.,
for the variable h. When the central NT scheme is considered, the water depth
and the riverbed bottom are supposed to be linear inside each cell. Here, the
linearization of the water depth will be made indirectly by prescribing first the
linearization of the water level H(x) and then by using the relation h(x) =
H(x) − z(x). The linearization H(x) inside a cell Ii is obtained by using a
slope limiting procedure on the cell values Hi = hi + zi. Thus, for x ∈ IiII
we have H(x) = HiHH + H ′

iH (x − xi). The derivation of the water depth can be
obviously calculated as

h′
i = H ′

iHH − 1
∆x

(zi+ 1
2
− zi− 1

2
). (20)

When the staggered values are considered the reformulation is again applied
just to h. First we define the point values of the water level on the staggered
mesh as

H̃iH + 1
2

= hi+ 1
2

+ z̃i+ 1
2
. (21)

Here the term z̃i+ 1
2

= zi+ 1
2
− 1

2

(
zi+ 1

2
− zi+zi+1

2

)
is the corrected riverbed

bottom. The reason of this correction lies in the fact that the riverbed is not
linear inside the staggered cell IiI + 1

2
. Now the discrete derivatives H ′

i+ 1
2

are

derived from the staggered values {H̃iH + 1
2
} by using a standard slope limiter

procedure. Then the relation

h′
i+ 1

2

= H̃ ′
i

H
+ 1

2

− 1
∆x

(zi+1 − zi) (22)

is applied.
We claim that for the described treatment of the cell average evaluations the

reformulated nonstaggered central scheme is consistent with the quiescent flow
case. Let us prove that.
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From the relation (19) follows that the staggered values do not change in
the time step of the numerical scheme. That means, it is enough to prove that
transformations from the staggered values to the nonstaggered ones and then
back return us the same values that we start form. We concentrate just on the
variable h.

The quiescent flow at the discrete level can be written as

HiHH = hi + zi = const. (23)

From relations (4) and (20) we obtain

h
n
i+ 1

2
=

1
2
(hn

i + h
n
i+1)

+
∆x

8

(
H ′

iHH −
zi+ 1

2
− zi− 1

2

∆x
−H ′

iHH +1 +
zi+ 3

2
− zi+ 1

2

∆x

)
=

1
2
(hn

i + h
n
i+1)−

1
2

(
zi+ 1

2
− zi + zi+1

2

)
. (24)

The last equality is obtained by using the fact that for the quiescent flow case
H ′

iH = 0 and by applying the relations zi+ 1
2
− zi− 1

2
= 2(zi+ 1

2
− zi) and zi+ 3

2
−

zi+ 1
2

= 2(zi+1 − zi+ 1
2
). By using (24) in (21) simple calculations give us

H̃iH + 1
2

= 1
2(hi +hi+1 +zi +zi+1) and since (23) is valid, H̃iH + 1

2
is constant over

the whole domain. Finally, the nonstaggered values are evaluated from (8) by
using (22) as

h
n+1
i =

1
2
(hn+1

i− 1
2

+ h
n+1
i+ 1

2
) (25)

−∆x

8

(
H ′

i
H

+ 1
2

− zi+1 − zi

∆x
−H ′

i
H − 1

2

+
zi − zi−1

∆x

)
. (26)

By taking into account expressions (24) for the staggered values of h and the
fact H ′

i
H

+ 1
2

= 0, the right side of (26) reduces to h
n
i . With this the proof of the

consistency with the quiescent flow case is ended.

2.2 The cell centered type reformulation
Now we consider the case in which the bottom heights zi at cell centers are

given. The surface gradient method is then applied in the next way. Let us notice
that the term un

i+ 1
2

appears only in relation (11), where the approximation of

the spatial part is added to this term. Therefore it is not necessary to evaluate
the term h

n+1
i+ 1

2
directly. Instead, we compute the staggered values H

n
i+ 1

2
at the

same way at it was described in the previous paragraph, i.e., by using values
HiHH = hi +zi and a slope limiter procedure for evaluating the derivatives. After
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the evolution step (12) is applied, we obtain instead of h
n+1
i+ 1

2
as a first component

of the variable un+1
i+ 1

2

, the staggered value of the water level Hn+1
i+ 1

2
. The next step

of the method, in which the nonstaggered values are computed, give us the water
level values H

n+1
i . Finally, by applying the simple relation h

n+1
i = H

n+1
i −zi

the water depth values at time step t = tn+1 are obtained.
We prove now that the scheme obtained with this reformulation preserves

also the quiescent steady state exactly.
Again, as in the previous reformulation, due to equalities (18) and (19), we

concentrate just on verification if the procedure of passing from staggered to
nonstaggered values and back preserve the water depth in the quiescent flow
case. Since (23) is valid H ′

iH = 0, so from (4) we get

H
n
i+ 1

2
=

1
2
(Hn

i + H
n
i+1) = const.

As the staggered values do not change in the evolution step the values H
n+1
i+ 1

2
will

be constant and the term H ′
i+ 1

2
will be equal zero. By including the established

facts in (8) we have

H
n+1
i =

1
2
(Hn

i− 1
2

+ H
n
i+ 1

2
) = H

n
i , (27)

so the equality h
n+1
i = h

n
i is obviously fulfilled.

3. Numerical results
In this section we present the improvements obtained by using the proposed

balanced versions of the nonstaggered central NT scheme on several test prob-
lems. In all the test problems the CFL coefficient is set to 0.5.

3.1 A quiescent steady test
In this test section we are interested in the quiescent steady state preserving

property of our scheme. We test it on the problem with the riverbed geometry
proposed by the Working Group on Dam–Break Modelling, as described in [2].
The water level is initially defined with H = 15m and the water is at rest.
The riverbed and the initial water level are presented in Fig. 1. Computations
are performed by using the interface type reformulation and ∆x = 7.5m. In
Fig. 2 we can see the performance obtained by using the balanced and the
pointwise central NT scheme. The numerical errors that appear when just the
pointwise source term evaluation is used are very large, therefore unacceptable
for practical use.
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3.2 Tidal wave propagation in a channel with a
discontinuous bottom

We consider here an unsteady problem taken again from [2]. It is used to
establish the correctness of the central NT scheme in the case of a gradually
varied flow and to show that the proposed source term evaluation is necessary
when a discontinuous bottom is present. The riverbed is the same as in previous
test problem. The tidal wave incoming from the left boundary is defined with
h(0, t) = 16.0 − 4.0 sin

[
π
(

4t
86400 + 1

2

)]
. The water 12m high is initially at

rest. The right boundary condition is v(1500, t) = 0. The computations are
performed with the space step ∆x = 7.5m. We give numerical results after
t = 10800s. Results presented in Fig. 3, where the comparison between the
balanced and nonbalanced versions of the central NT schemes is made, clearly
illustrate the superiority of the balanced schemes. Then in Fig. 4 the numerically
obtained velocity profile is compared with the approximate one (see [1]). We
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Figure 1. Initial conditions for the test problem 3.1.
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Figure 2. Comparison in water level for the quiescent steady state at t = 100s. Test problem
3.1.



Balanced central NT schemes for the shallow water equations 181

can conclude that the agreement is excellent. This suggest that the proposed
scheme is accurate for tidal flow over an irregular bed. Such a behaviour could
be very encouraging for real water flow simulations over natural watercourses.
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Figure 3. Comparison of velocity at t = 10800s in the test problem 3.2.

0

0,02

0,04

0,06

0,08

0,1

0 250 500 750 1000 1250 1500

x

v
el

o
ci

ty

Exact solution

Numerical solution

Figure 4. Velocity computed with the balanced central NT scheme vs. asymptotic solution at
t = 10800s. Test problem 3.2.

3.3 A convergence test over an exponential bump
This is a steady state test problem used for testing the convergence properties

of the balanced central NT scheme. We know that a central NT scheme is second
order accurate when it is used on homogeneous conservation laws. Now we
want to confirm this order of accuracy for the balance laws also. The riverbed
bottom is supposed to be given with a smooth function z(x) = 0.2e−

4
25

(x−10)2 .
The domain is in the range [0, 20] and the initial condition is steady subcritical
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flow with a constant discharge equal 4, 42m2/s. The stationary solution could
be evaluated analytically and should be preserved. With the given test problem
we examine accuracy and the convergence properties of our scheme. Here we
test the interface type reformulation. The convergence test results are presented
in Table 1. We can notify that the experimentally established orders coincide
very well with the theoretic ones.

Table 1. Accuracy of the central NT scheme. Test problem 3.3.

Errors in water level
N L1 error L1 order L∞ error L∞ order
20 3.72 × 10−3 1.58 × 10−2

40 1.18 × 10−3 1.65 5.34 × 10−3 1.57
80 2.83 × 10−4 2.07 1.71 × 10−3 1.64
160 6.76 × 10−5 2.07 4.98 × 10−4 1.78
320 1.66 × 10−5 2.02 1.29 × 10−4 1.95

Errors in discharge
N L1 error L1 order L∞ error L∞ order
20 6.82 × 10−3 2.51 × 10−2

40 2.06 × 10−3 1.73 1.10 × 10−2 1.20
80 5.20 × 10−4 1.99 3.74 × 10−3 1.55
160 1.29 × 10−4 2.01 1.07 × 10−3 1.81
320 3.21 × 10−5 2.00 2.76 × 10−4 1.95

3.4 LeVeque test example over bump
This test problem is suggested by LeVeque ([4]). The bottom topography is

defined with

z(x) =
{

0.25(cos(10π(x − 0.5)) + 1) , if |x− 0.5| < 0.1
0 , otherwise (28)

over the domain [0, 1]. The initial conditions are

v(x, 0) = 0 and h(x, 0) =
{

1.01 − z(x) , if 0.1 < x < 0.2
1.0− z(x) , otherwise . (29)

As in [4] we take g = 1. A small perturbation that is defined with the initial
conditions splits into two waves. The left-going wave leaves the domain, while
the right-going one moves over the bump. Results are shown at time t = 0.7s
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after the left-going wave already left the domain while a right-going passes the
bump. The computations are performed with a space step ∆x = 0.005 and by
using the cell centered type reformulation. The disturbance in the pointwise
version caused by the varying riverbed bottom can be clearly seen in Fig. 5.
These numerical errors are of the same order as the disturbance that is moving
over the domain. That leads to the conclusion that the nonbalanced scheme is
especially unfavorable for the cases in which small disturbances appear.
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Figure 5. Comparison in water level at t = 0.7s. Test problem 3.4.

3.5 Dam–break over a rectangular bump
This is a test problem taken from [7]. The purpose of this test is to check

the balanced central NT scheme in the case of rapidly varying flow over a
discontinuous bottom. The riverbed is given with

z(x) =
{

8 , if |x− 1500/2| < 1500/8
0 , otherwise , (30)

while the initial conditions are

H(x, 0) =
{

20 , if x ≤ 750
15 , otherwise and v(x, 0) = 0. (31)

The Manning friction factor is set to 0.1. The computations are performed with
the space step ∆x = 2.5m and the cell centered type reformulation. In Figs. 6
and 7 we compare the balanced and the nonbalanced central NT scheme at time
t = 15s. The improvements obtained by using a balanced version are clearly
visible.
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4. Conclusion remarks
In this paper we present the extension of the nonstaggered central NT schemes

to the balanced laws with geometrical source terms. The equilibrium type dis-
cretization of the source term, that includes the balancing with the flux gradient
is used. The schemes are applied to the shallow water equations. The com-
putations performed on several test problems show very good results in steady
and unsteady flow cases.
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